Light propagation in a turbid medium with insonified microbubbles.
نویسندگان
چکیده
Surfactant stabilized microbubbles are widely used clinical contrast agents for ultrasound imaging. In this work, the light propagation through a turbid medium in the presence of microbubbles has been investigated. Through a series of experiments, it has been found that the optical attenuation is increased when the microbubbles in a turbid medium are insonified by ultrasound. Such microbubble enhanced optical attenuation is a function of both applied ultrasound pressure and microbubble concentration. To understand the mechanisms involved, a Monte Carlo (MC) model has been developed. Under ultrasound exposure, the sizes of microbubbles vary in space and time, and their dynamics are modeled by the Rayleigh-Plesset equation. By using Mie theory, the spatially and temporally varying optical scattering and scattering efficiency of microbubbles are determined based on the bubble sizes and internal refractive indices. The MC model is shown to effectively describe a medium with rapidly changing optical scattering, and the results are validated against both computational results using an N-layered diffusion equation model and experimental results using a clinical microbubble contrast agent (SonoVue®).
منابع مشابه
Spatial shift of spatially modulated light projected on turbid media.
This work extends modulated imaging, a recently developed technique based on the projection of structured light on a turbid medium that is able to measure optical properties of the high-scattering medium and perform tomography. We observe that structured light obliquely projected on a turbid medium undergoes a spatial shift during propagation. We propose a method to measure the spatial phase sh...
متن کاملThree-dimensional localization and optical imaging of objects in turbid media with independent component analysis.
A new approach for optical imaging and localization of objects in turbid media that makes use of the independent component analysis (ICA) from information theory is demonstrated. Experimental arrangement realizes a multisource illumination of a turbid medium with embedded objects and a multidetector acquisition of transmitted light on the medium boundary. The resulting spatial diversity and mul...
متن کاملScattering of Polarized Light in Optically Active Turbid Medium
We studied optical properties of polarized light scattered off a turbid medium. Based on the experimental setup, and using Muller calculus, we developed a model that provided us with optical information of the scattered light like amount of surviving linear polarization and optical rotation of the light after scattering. The scattered light was detected laterally, perpendicular to the direction...
متن کاملCoupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the d...
متن کاملThe study of propagation of a femtosecond laser pulse in the breast tissue
In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2013